Skip to main content Site Map

Department of
Biomedical Engineering

Engineering innovative solutions to modern problems in medicine and biology

Biomedical Engineering Site Menu

Photo of Jian Yang

Jian Yang


W-340 Millenium Science Complex

University Park, PA 16802

Phone: 814-865-1278 / Fax: 814-863-0490

Personal Website:


Ph.D. Polymeric Biomaterials, Chinese Academy of Sciences, 2002

Research Interests

Our research interests are to investigate the methodology of functional biomaterial development and use the biomaterials as tools to solve unmet clinical problems. Currently, our research projects include:

  1. Development of citrate-based biodegradable elastomers
  2. Cardiovascular tissue engineering
  3. Cancer drug delivery and imaging
  4. Nerve tissue engineering
  5. Regulating stem cell fate via functional polymers
  6. Orthopedic devices and bone tissue engineering
  7. Bioinspired adhesive hydrogels
  8. Medical devices.

Representative Publications

Tang, J., Guo, J., Li, Z., Yang, C., Chen, J., Li, S., Xie, D., Kim, G.B., Li, S., Bai, X., Zhang, Z., Yang, J. Development of fast degradable citrate-based bone scaffolds for spinal fusion. Journal of Materials Chemistry B 2015, 3: 5569-5576

Xie, D., Guo, J., Mehdizadeh, M., Tran, R.T., Chen, R., Sun, D., Qian, G., Jin, D., Bai, X., Yang, J. Development of Injectable Citrate-based Bioadhesive Bone Implants. Journal of Materials Chemistry B 2015, 3: 387-398

Sun, D., Chen, Y., Tran, R.T., Xu, S., Xie, D., Jia, C., Wang, Y., Guo, Y., Guo, J., Zhang, Z., Yang, J., Jin, D., Bai, X. Citric Acid-based Osteoinductive Scaffolds Enhance Calvarial Regeneration. Scientific Reports 2014, 4: 6912 doi:10.1038/srep06912

Su, L.C., H. Xu, R.T. Tran, Y.-T. Tsai, L. Tang, J. Yang, and K.T. Nguyen. In-situ reendothelialization via multifunctional nano-scaffolds. ACS Nano 2014, 8 (10): 10826–10836

Xie, Z., Y. Zhang, L. Liu, H. Weng, R.P. Mason, L. Tang, K.T. Nguyen, J.-T. Hsieh, and J. Yang. Development of intrinsically photoluminescent and photostable polylactones. Advanced Materials 2014, 26: 4491–4496

Guo, J., Z, Xie, R.T. Tran, D. Xie, D. Jin, X. Bai, and J.Yang. Click chemistry played a dual role in biodegradable polymer design. Advanced Materials 2014, 26:1906-1911. (Back cover)

Gaywali*, D., S. Zhou*, R.T. Tran*, Y. Zhang*, C. Liu*, X. Bai, and J. Yang. Fluorescence imaging enabled biodegradable photostable polymeric micelles. Adv Healthcare Mater 2014, 3(2):182-186.

Zhang, Y., R.T. Tran, I. Qattan, Y.-T. Tsai, L. Tang, C. Liu, and J. Yang. Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers. Biomaterials 2013, 34: 4048-4056

Zhang, Y., Yang, J. Design Strategies for Fluorescent Biodegradable Polymeric Biomaterials. Journal of Materials Chemistry B 2013, 1(2): 132-148

Gyawali, D., Nair, P., Kim, H., Yang, J. Citrate-based biodegradable injectable composite for orthopaedic applications. Biomaterials Science 2013, 1: 52-64

Mehdizadeh, M., H. Wen, D. Gyawali, L. Tang, J. Yang. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 2012, 33:7972-7983

Gyawali, D., P. Nair, Y. Zhang, R.T. Tran, C. Zhang, M. Samchukov, M. Makarov, H. Kim, and J. Yang. Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 2010, 31:9092-9105

Yang, J., S. Gautam*, L. Liu, J. Dey, W. Chen, R. Mason, and L. Tang. Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl. Acad. Sci., 2009, 106:10086-10091