Skip to main content

Hancock Lab

Molecular Biomechanics

Molecular Biomechanics Site Navigation

Publications

*Click on titles to view papers.

Inter-head Tension Determines Processivity Across Diverse N-Terminal Kinesins.  S. Shastry and W.O. Hancock.  2011.  Proc. Natl. Acad. Sci., 108(29):16253-8

Engineering Tubulin:  Microtubule Functionalization Approaches for Nanoscale Device Applications. J.L. Malcos and W.O. Hancock.  2011. Applied Microbiology and Biotechnology90:1-10.

A matrix computational approach to kinesin neck linker extension.  J. Hughes, W.O. Hancock, J. Fricks. 2011.  Journal of Theoretical Biology 269(1):181-194.

“Artificial Mitotic Spindle” generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads.  M. Uppalapati, Y.-M. Huang, V. Aravamuthan, T.N. Jackson and W.O. Hancock. 2011.  Integrative Biology 3:57-64.

Monte Carlo analysis of neck linker extension in kinesin molecular motors.  M..L Kutys, J. Fricks and W.O. Hancock.  2010.  PLoS Computational Biology 6(11): e1000980. doi:10.1371/journal.pcbi.1000980.

Neck linker length determines the degree of processivity in Kinesin-1 and Kinesin-2 motors. S. Shastry and W.O. Hancock.  2010.  Current Biology 20: 939-943. Supplemental Data.

Likelihood Inference for Fluorescence Microscopy Images.  J. Hughes, J. Fricks, and W.O. Hancock. 2010.   Annals of Applied Statistics 4: 830-848.

Insights into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations.  V. Hariharan and W.O. Hancock.  2009.  Cellular and Molecular Bioengineering 2(2):177-89.

Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells.  A.D. Bicek, E. Tüzel, A. Demtchouk, M. Uppalapati, W.O. Hancock, D.M. Kroll, D.J. Odde. 2009.  Molecular Biology of the Cell 20(12):2943-53.

The Processivity of Kinesin-2 Motors Suggests Diminished Front-Head Gating.  G. Muthukrishnan, Y. Zhang, S. Shastry and W.O. Hancock.  2009.  Current Biology 19(5):442-7. Supplemental Data.

Surface-bound casein modulates the adsorption and activity of kinesin on SiO­2 surfaces.  T. Ozeki, V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J.M. Catchmark and W.O. Hancock.  2009.  Biophysical Journal 96(8):3305-18.

Uppalapati, M., Y-M Huang, S. Shastry, T.N. Jackson and W.O. Hancock, (2009).  Microtubule Motors in Microfluidics.  Methods in Bioengineering: Microfabrication and Microfluidics, J.D. Zahn and L.P. Lee, Eds.  Artech House Publishers, Boston, MA.  2009.

Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility.  V. Verma, W.O. Hancock, and J.M. Catchmark. 2009. Biomedical Microdevices 11(2):213-22.

Neutravidin micropatterning by deep UV irradiation. Y.M. Huang, M. Uppalapati, W.O. Hancock and T.N. Jackson. 2008.  Lab on a Chip 8(10): 1745-7.

The role of casein in supporting the operation of surface bound kinesin.  V. Verma, W.O. Hancock, and J.M. Catchmark. 2008. Journal of Biological Engineering 2:14.

Intracellular transport: kinesins working together.  W.O. Hancock.  2008. Current Biology 18(16): R715-7.

Microtubule alignment and manipulation using AC electrokinetics. M. Uppalapati, Y. M. Huang, T.N. Jackson and W.O. Hancock.  2008. Small 4(9): 1371-81.

Transport and detection of unlabeled nucleotide targets by microtubules functionalized with molecular beacons.  M. Raab and W.O. Hancock. 2008. Biotechnology and Bioengineering,  99(4): 764-773.

Enhancing the stability of kinesin motors for microscale transport applications.  M. Uppalapati, Y.-M. Huang, T.N. Jackson and W.O. Hancock.  2008.  Lab on a Chip 8:358-361.

Microtubule transport, concentration and alignment in enclosed microfluidic channels.  Y.-M. Huang, M. Uppalapati, W.O. Hancock and T.N. Jackson.  2007.  Biomedical Microdevices  9:175-184.

Directing transport of CoFe2O4-functionalized microtubules with magnetic fields B.M. Hutchins, M. Platt, W.O. Hancock and M.E. Williams. 2007. Small 3(1): 126-131.

Motility of CoFe2O4 nanoparticle-labelled microtubules in magnetic fields.  B.M. Hutchins, W.O. Hancock and M.E. Williams. 2006. Micro and Nano Letters. 1(1): 47-52.

Magnet assisted fabrication of microtubule arrays.  B.M. Hutchins, W.O. Hancock and M.E. Williams. 2006. Phys. Chem. Chem. Phys.  8(30):3507-3509.

Transport of semiconductor nanocrystals by kinesin molecular motors.  G. Muthukrishnan, B.M. Hutchins, M.E. Williams, and W.O. Hancock. 2006  Small, 2(5):626-630.

Hancock, W.O. “Protein-Based Nanotechnology:  Kinesin-Microtubule Driven Systems for Bioanalytical Applications.”  In Nanotechnology for Life Sciences Volume 4:  Nanodevices for Life Sciences.  C. Kumar, Editor, Wiley-VCH, Winheim, Gerrmany. 2006.

Microfabricated capped channels for biomolecular motor-based transport.  Y.M. Huang, M. Uppalapati, W.O. Hancock, and T.N. Jackson. 2005.  IEEE Transactions on Advanced Packaging, 28(4):564-570.

Micro- and nanofabrication processes for hybrid synthetic and biological system fabrication.  V. Verma, W.O. Hancock, and J.M. Catchmark. 2005.  IEEE Transactions on Advanced Packaging, 28(4):584-593.

Millimeter scale alignment of magnetic nanoparticle functionalized microtubules in magnetic fields. M. Platt, G. Muthukrishnan, W.O. Hancock, and M.E. Williams. 2005.  Journal of the American Chemical Society, 127(45):15686-15687.

The two motor domains of KIF3A/B coordinate for processive motility and move at different speeds, Y. Zhang and W.O. HancockBiophysical Journal, 87:1795-1804 (2004).

Patterning surface-bound microtubules through reversible DNA hybridization.  G. Muthukrishnan, C.A. Roberts, Y.C. Chen, J.D. Zahn and W.O. HancockNanoLetters 4:2127-2132.

Microscale transport and sorting by kinesin molecular motors,  L. Jia, S.G. Moorjani, T.N. Jackson and W.O. Hancock. Biomedical Microdevices 6(1): 67-74 (2004).

Lithographically patterned channels spatially segregate kinesin motor activity and effectively guide microtubule movements. S.G. Moorjani, L. Jia, T.N. Jackson and W.O. Hancock.   NanoLetters 3:633-637 (2003).

The Kinesin-Related Protein MCAK Is a Microtubule Depolymerase that Forms an ATP-Hydrolyzing Complex at Microtubule Ends.  A.W. Hunter, M. Caplow, D.L. Coy, W.O. Hancock, S. Diez, L. Wordeman, and J. Howard. Molecular Cell 11: 445-457.  (2003)

A polarized microtubule array for kinesin-powered nanoscale assembly and force generation, T.B. Brown and W.O. Hancock, NanoLetters 2:1131-1135 (2002).

The Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement, A.I. Marcus, J.C. Ambrose, L. Blickley, W.O. Hancock and R.J. Cyr.  Cell Motility and the Cytoskeleton  52:144-50 (2002).

Hancock, W.O. and J. Howard. 2002. “Kinesin: Processivity and Chemomechanical Coupling.”  Molecular Motors. M. Schliwa, editor, Wiley-VCH, Winheim, Germany, 10:243-269.

Reconstitution and characterization of budding yeast gamma-tubulin complex, D. B. Vinh, J. W. Kern, W. O. Hancock, J. Howard, and T. N. Davis, Mol Biol Cell 13:1144-57 (2002).

Susalka, S.J., W.O. Hancock, and K.K. Pfister. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochimica et Biophysica Acta 1496:76-88 (2000).