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a b s t r a c t

In response to oxidative stress, the transcription factor NF-E2-related factor 2 (Nrf2) controls the fate of
cells through transcriptional upregulation of antioxidant response element (ARE)-bearing genes, including
those encoding endogenous antioxidants, phase II detoxifying enzymes, and transporters. Expression of
the Nrf2-dependent proteins is critical for ameliorating or eliminating toxicants/carcinogens to maintain
cellular redox homeostasis. As a result, activation of the Nrf2 pathway, by naturally-occurring compounds
or synthetic chemicals at sub-toxic doses, confers protection against subsequent toxic/carcinogenic expo-
sure. Thus, the use of dietary compounds or synthetic chemicals to boost the Nrf2-dependent adaptive
response to counteract environmental insults has emerged to be a promising strategy for cancer preven-
tion. Interestingly, recent emerging data has revealed the “dark” side of Nrf2. Nrf2 and its downstream
genes are overexpressed in many cancer cell lines and human cancer tissues, giving cancer cells an advan-
tage for survival and growth. Furthermore, Nrf2 is upregulated in resistant cancer cells and is thought to
be responsible for acquired chemoresistance. Therefore, it may be necessary to inhibit the Nrf2 pathway
during chemotherapy. This review is primarily focused on the role of Nrf2 in cancer, with emphasis on the
recent findings indicating the cancer promoting function of Nrf2 and its role in acquired chemoresistance.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1994, Moi et al. first cloned and characterized NF-E2-related
factor 2 (Nrf2) based on its ability to bind the NF-E2/AP-1 repeat in
the promoter of the beta-globin gene [1]. Like NF-E2, Nrf2 is also a

member of the cap ‘n’ collar (CNC) subfamily of transcription factors
and contains a basic leucine zipper DNA binding domain (bZip) at
the C-terminus. It was found to be ubiquitiously expressed in many
organs and dispensable for the normal development of mice [2].
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Human Nrf2 is homologous to chicken and mouse and has six
ighly conserved domains, Neh1-6. The Neh1 domain contains
NC-type basic leucine zipper that is necessary for DNA bindin
nd dimerization with other transcription factors. Additionally,
unctional NLS has been identified in this domain [3]. The Neh2
omain binds the Kelch domain of Keap1, a negative regulator o
rf2, and has seven lysine residues that are responsible for ubiq
itin conjugation, which leads to proteasomal degradation of Nrf2
4,5]. Neh3 is necessary for transcriptional activation by recruit

ng a coactivator, CHD6; however, not much is known about the
pecific role of CHD6 [6]. Neh4 and Neh5, rich in acidic residues,
re two independent transactivation domains that act synergisti-
ally and interact with the CREB-binding protein (CBP) [7]. Lastly,
he Neh6 domain is heavily concentrated with serine residues, but

http://www.sciencedirect.com/science/journal/10436618
http://www.elsevier.com/locate/yphrs
mailto:dzhang@pharmacy.arizona.edu
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ot much is known about the role and/or significance of the Neh6
omain.

Upon exposure of cells to oxidative stress or chemopre-
entive compounds, Nrf2 translocates to the nucleus, forms a
eterodimer with its obligatory partner Maf, and binds to the
ntioxidant response element (ARE) sequence to activate transcrip-
ion of several different types of genes [8]. The Nrf2 downstream
enes identified so far can be grouped into several categories,
ncluding (i) intracellular redox-balancing proteins: glutamate
ysteine ligase (GCL), glutathione peroxidase (GPx), thioredoxin
Trx), thioredoxin reductase (TrxR), peroxiredoxin (Prx), and heme
xygenase-1 (HMOX-1), (ii) phase II detoxifying enzymes: glu-
athione S-transferase (GST), NAD(P)H quinone oxidoreductase-1
NQO1), and UDP-glucuronosyltransferase (UGT), and (iii) trans-
orters: multidrug resistance-associated protein (MRP) [9–17]. The
rimary function of intracellular redox-balancing proteins is to
aintain cellular glutathione and Trx levels and reduce levels of

eactive oxygen species (ROS). Phase II enzymes function in two
spects: (i) metabolize xenobiotics into less toxic forms, or (ii) cat-
lyze conjugation reactions to increase the solubility of xenobiotics,
hereby, facilitating their elimination. Lastly, the main function of
ransporters is to control uptake and efflux of endogenous sub-
tances and xenobiotics. The majority of the downstream genes
f Nrf2 contain an ARE sequence in the promoter, which was dis-
overed and characterized by Rushmore et al. in 1991 [18]. The
onsensus sequence, 5′-GTGACNNNGC-3′ was first identified in the
′-flanking region of the rat GST-Ya subunit and the NQO1 gene
y mutation and deletion analysis [18]. Later, Wasserman and Fahl
urther characterized the ARE sequence to a “core” sequence of 5′-
TGACnnnGCR-3′ using murine GST-Ya ARE and identified 16 other
enes that contained the sequence in their promoters [19]. How-
ver, in 2003 a comprehensive mutational study on the NQO1-ARE
evealed that the ARE sequence did not conform to the general
onsensus sequence [20].

Based on the function of Nrf2 target genes, one can easily con-
lude that activation of Nrf2 may protect cells from various stresses
mposed by toxic exposure. Indeed, the Nrf2-mediated antioxidant
esponse is one of the major cellular defense mechanisms that
acilitate cell survival under toxic insults. This notion is best demon-
trated in animal models, showing that Nrf2-null mice are more
ensitive than wild-type mice to the toxic and carcinogenic effects
f a wide variety of xenobiotics, including benzo[a]pyrene, diesel
xhaust, cigarette smoke, N-nitrosobutyl(4-hydroxybutyl)amine,
entachlorophenol, and acetaminophen [21–27].

. Mechanism of Nrf2 activation

The activity of Nrf2 is negatively regulated by Kelch-like ECH-
ssociated protein 1 (Keap1), which was cloned by Yamamoto and
olleagues in 1999 using the N-terminal domain of Nrf2 (Neh2)
s bait in a yeast two-hybrid system. Keap1 contains two major
omains, a BTB domain (broad complex, tramtrack, and bric-a-
rac) and a Kelch domain. The crystal structures of the Kelch
omain alone or in complex with N-terminal peptides of Nrf2 have
een resolved [28–31]. Despite the notion that the Kelch domain-
ontaining proteins may bind actin filaments, mounting evidence
as shown that Keap1 is a shuttling protein. For example, Keap1

nteracts with the abundant nuclear protein prothymosin � (ProT�),
hich implies its ability to translocate from the cytoplasm to the

ucleus [32]. Furthermore, leptomycin B, an inhibitor of Crm-1-
ependent nuclear export, restrains Keap1 in the nucleus [21].
urthermore, a very strong leucine-rich nuclear export signal (NES)
as identified in Keap1 and the importance of the NES in regulating
rf2 was demonstrated [32–35].

a
c
n
a
c

search 58 (2008) 262–270 263

Since the cloning of Keap1, great progress has been made in
nderstanding the mechanism of Keap1-mediated negative regu-

ation of Nrf2. It has been proposed that Keap1 acts as a molecular
witch that is able to turn the Nrf2-signaling pathway on or off
ccording to intracellular redox conditions. Serving as a molecular
witch, Keap1 possesses dual functions: it is able to (i) “sense” a dis-
urbance in the redox homeostasis and (ii) turn the Nrf2-mediated
esponse on or off. Recent studies have dissected how these two
unctions are accomplished by Keap1.

.1. Keap1 functions as a sensor

Keap1 is rich in cysteine residues (27 cysteine residues in human
eap1 and 25 cysteines in mouse Keap1), which encodes the sen-
or mechanism. Three key cysteine residues (C151, C273, and C288)
ere identified by both in vitro alkylation and in vivo site-directed
utagenesis assays [36–43]. Cysteine-151 is likely the major site

hat is directly alkylated by Nrf2 inducers [37–39]. The ability
f the Keap1 mutant, where cysteine-151 is replaced with a ser-
ne (Keap1-C151S), to repress the activity of Nrf2, is comparable
o wild-type Keap1 (Keap1-wt). However, mutation of C151 com-
letely abolished induction of Nrf2 by many Nrf2 activators, such as
ulforaphane (SF) and tert-butylhydroquinone (tBHQ) [40]. Inter-
stingly, activation of the Nrf2 response by arsenic seems to be
ndependent of C151 in Keap1 since the C151 mutation did not
revent Nrf2 induction [44]. A single cysteine to serine mutation
as also made in C273 or C288, which rendered Keap1 unable

o repress Nrf2, even though the Keap1-C273S or Keap1-C288S
utants were highly expressed and were capable of binding Nrf2

40,42,43]. In summary, these data indicate that C151 in Keap1 is
equired for activation of the Nrf2 pathway while C273 or C288
s necessary for repressing Nrf2. More significantly, the functional
mportance of these three cysteine residues under physiological
onditions has recently been confirmed using animal models [45].
eap1-C151 is able to rescue the phenotype presented by Keap1-
ull mice, such as overexpression of Nrf2 and postnatal lethality in
eap1−/−::TgKeap1−C151 mice. Moreover, mouse embryonic fibrob-

asts (MEF) derived from Keap1−/−::TgKeap1−C151 mice showed
oth lower basal and inducible expression of Nrf2 [45]. It was con-
luded from these experiments that these three cysteine residues
ay be the center of the Keap1 redox-sensing mechanism. The
echanism(s) by which these cysteines function by first sensing the

edox-imbalance then transducing these signals to Nrf2 remain(s)
lusive.

.2. Keap1 functions as a molecular switch

Under basal conditions, in which redox homeostasis is main-
ained in cells, the molecular switch of Keap1 is in an “off” position.
his is achieved through constant Keap1-mediated degradation of
rf2 by the ubiquitin-mediated proteasomal degradation system

4,46–48]. Ubiquitin-mediated protein degradation plays an impor-
ant role in controlling many cellular processes, such as cell cycle,
ell growth/differentiation, and cellular response to stress. The
biquitin-mediated degradation machinery involves many pro-
eins and protein complexes that execute degradation of a target
rotein by two successive processes: (i) ubiquitin conjugation to
ubstrates, and (ii) 26S proteasomal-mediated degradation of the
olyubiquitinated substrates [49–51].

Ubiquitin is an evolutionarily conserved small protein with 76

mino acids. The post-translational process in which ubiquitin is
ovalently added to lysine residues of a substrate is called ubiquiti-
ation. Ubiquitin becomes covalently attached to substrates either
s a single molecule (monoubiquitination) or as a poly-ubiquitin
hain (polyubiquitination). The major function of ubiquitination is
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o label proteins for proteasomal degradation. However, ubiquitin
odification has also been shown to play a role in other processes

uch as DNA repair, endocytosis, and ribosome biogenesis. Cova-
ent attachment of ubiquitin to substrates is accomplished through
he coordinated action of three classes of enzymes: (i) ubiquitin
ctivating enzyme, E1, (ii) ubiquitin conjugating enzyme, E2, and
iii) ubiquitin ligase, E3. In the initial step, ubiquitin is attached to a
ysteine residue on E1 through a high-energy thioester bond. Next,
biquitin is transferred from E1 to E2 by transthiolation, and lastly,
3 mediates ubiquitin transfer from E2 to lysine residues of a sub-
trate. The E3 ligase is responsible for substrate specificity and can
unction as a single protein, but a large number of them appear to
e protein complexes containing multiple proteins [49–51].

Keap1 was proved to be a substrate adaptor protein for the
eap1–Cul3–Rbx1 E3 ubiquitin ligase complex, responsible for Nrf2
egradation, by four independent groups in 2004 [4,48,52,53].
nder basal conditions, Keap1 brings Nrf2 into the E3 ligase com-
lex through its two major domains: the BTB domain interacts with
ul3 and the Kelch domain binds Nrf2 [4]. Docking of Nrf2 into the
3 complex facilitates ubiquitin transfer from E2 to lysine residues
f Nrf2. Consequently, ubiquitinated Nrf2 is quickly degraded by
he 26S proteasome to keep the Nrf2 pathway off. A low consti-
utive level of the Nrf2-dependent response is maintained by low
evels of ROS that are generated by physiological processes, such as
he respiratory chain reaction. In summary, Nrf2 is a very unstable
rotein under basal conditions because Keap1 is actively target-

ng Nrf2 for ubiquitination and degradation. Furthermore, we have

hown that the ubiquitin accepting lysine residues are within the
eh2 domain of Nrf2 and mutating these seven lysine residues to
rginines renders the Nrf2 mutant to be more resistant to Keap1-
ependent degradation [4]. Interestingly, the seven lysine residues
re within the high-affinity ETGE and the low-affinity DLG motifs

K
u
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s
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ig. 1. Schematic model of Nrf2 regulation by Keap1. Keap1 is a key regulator of the Nrf2
ediated antioxidant response. (i) The switch is in off position: under basal conditions, Ke

nd degradation. As a consequence, there are minimal levels of Nrf2. (ii) The switch is t
eap1–Cul3–Rbx1 E3 ubiquitin ligase, resulting in increased levels of Nrf2 and activation o
ellular redox homeostasis, Keap1 travels into the nucleus to remove Nrf2 from the ARE. Th
he cytosol, the Nrf2–Keap1 complex associates with the Cul3–Rbx1 core ubiquitin machin
huttling of Nrf2, Keap1, and the complex is omitted.
search 58 (2008) 262–270

hat bind the Kelch domain of Keap1, which is the proposed hinge
nd latch two-site binding model [54,55].

In response to Nrf2 inducers, Nrf2 becomes very stable and the
rf2 pathway is turned on. We observed that the half-life of endoge-
ous Nrf2 increased from 19 min in untreated cells to 51 min in
tressed MDA-MB-231 cells [56]. Keap1-mediated ubiquitination
f Nrf2 was reduced significantly upon treatment with tBHQ or
F [56]. Interestingly, we have shown that in cells cotransfected
ith Keap1-C151, tBHQ or SF could no longer repress ubiquitina-

ion of Nrf2 and had no effect on the half-life of Nrf2 [4,40]. These
ata demonstrate the importance of C151 in sensing ROS and in
urning on the Nrf2 pathway. However, the mechanism by which
rf2 inducers are able to block Keap1-mediated ubiquitination and
egradation of Nrf2 is still unclear. It is likely that direct modifica-
ion of C151 in Keap1 by tBHQ may cause a conformational change of
he Keap1–Cul3 E3 complex, resulting in a switch from Nrf2 ubiqui-
ination to auto-ubiquitination of Keap1 [57]. Intriguingly, different
rf2 inducers seem to activate Nrf2 by distinct mechanisms. In sup-
ort of this notion, SF was unable to elicit a switch of ubiquitination
rom Nrf2 to Keap1 [57]. More dramatically, arsenic induction of
rf2 was shown to be independent of C151 in Keap1 [44]. The details
nd distinct mechanisms of how various Nrf2 inducers activate the
rf2-signaling pathway remain to be deciphered.

Recent results from our laboratory provide a better under-
tanding of how the Nrf2-signaling pathway is turned off in the
ost-induction phase as intracellular redox levels approach home-
stasis [35]. Our work was greatly facilitated by the findings that

eap1 is a shuttle protein [32–34]. Since Keap1 is a major key reg-
lator of the Nrf2-signaling pathway, we performed our studies

n cells coexpressing Keap1 and Nrf2. We concluded that the NES
equence in Keap1 is required for Nrf2 inactivation after redox
omeostasis is re-obtained. In addition, we found that Keap1-

-signaling pathway and serves as a molecular switch to turn on and off the Nrf2-
ap1, functioning as an E3 ubiquitin ligase, constantly targets Nrf2 for ubiquitination
urned on: oxidative stress or chemopreventive compounds inhibit activity of the
f its downstream target genes. (iii) The switch is turned off again: upon recovery of

e Nrf2–Keap1 complex is then transported out of the nucleus by the NES in Keap1. In
ery, leading to degradation of Nrf2. For clarity, the constitutive cytoplasmic-nuclear
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ediated ubiquitination and degradation of Nrf2 occurred in the
ytoplasm and that Keap1 was able to travel into the nucleus inde-
endent of Nrf2 [35]. Based on these findings, we proposed that
ost-induction repression of the Nrf2 activity is accomplished by
eap1 through two distinguished functions. (i) The NES in Keap1:
eap1 translocates into the nucleus, dissociates Nrf2 from ARE
inding, and then exports the Nrf2–Keap1 complex back into the
ytoplasm and (ii) the substrate adaptor function of Keap1: once
n the cytoplasm, Keap1 targets Nrf2 to the Cul3-containing E3
biquitin ligase for ubiquitination and degradation.

Based on the current knowledge, we propose the following
odel of how Keap1 functions in switching the Nrf2-signaling

athway on/off (Fig. 1). Under basal conditions, Keap1 switches the
rf2-signaling pathway off and maintains low basal levels of Nrf2
y constantly targeting Nrf2 for ubiquitin-mediated protein degra-
ation. When Keap1 “senses” a disturbance in the redox balance,
he cysteine residues in Keap1 are modified, resulting in a confor-

ational change of the E3 ubiquitin ligase to a configuration not
onducive for Nrf2 ubiquitination. Consequently, Nrf2 accumulates
nder oxidative conditions, which allows free Nrf2 to translocate
o the nucleus and transcriptionally activate downstream genes by
inding to the ARE sequences and switching the Nrf2-signaling
athway on. Upon recovery of the redox balance, Keap1 travels

nto the nucleus, where it causes dissociation of Nrf2 from the ARE
equence. Subsequently, Keap1 escorts Nrf2 out of the nucleus to
he cytoplasmic Cul3-dependent E3 ubiquitin ligase machinery for
egradation. Thus, a low level of Nrf2 is re-attained, turning the
rf2-signaling pathway off.

Although Keap1 is the major regulator of Nrf2 activa-
ion, there is further evidence indicating multiple levels of
rf2 regulation. For example, phosphorylation of Nrf2 by sev-
ral different kinases, which include protein kinase C (PKC),
xtracellular-regulated kinase (ERK), Jun N-terminal kinase (JNK),
nd phosphatidylinositol3-kinase (PI3K), has been implicated in
egulating Nrf2 activation [58]. However, the functional signif-
cance of the reported phosphorylation residues in Nrf2, using
ell-based mutagenesis analysis, has not been defined yet. Addi-
ionally, coactivator CBP and P300 may provide another level of
egulation. These coactivators have been shown to bind Nrf2 at
he Neh4 and Neh5 domains to regulate transcription of ARE-
ontaining genes [7,59]. (For a more detailed review on the
egulation of Nrf2, refer to Ref. [58].)

. Nrf2 in cancer prevention

The concept of chemoprevention through the use of dietary
ompounds or synthetic chemicals has been rooted half a cen-
ury ago when the first report demonstrated that systemic
dministration of small quantities of xenobiotics, such as 3-
ethylcholanthrene, decreased the incidence of cancer in rats that
ere subsequently fed large doses of carcinogenic azo dyes [60].
ork over the last 50 years has identified many compounds from

lants, referred to as phytochemicals, possessing chemopreventive
ctivities [61–69]. Interestingly, many well-studied chemopreven-
ive compounds have been identified as Nrf2 inducers. Examples
f potent Nrf2 inducers from plants include sulforaphane (crucif-
rous vegetables) [62], curcumin (a widely used spice) [70–72],
pigallocatechin-3-gallate (EGCG; green tea) [73,74], resvera-
rol (grapes) [75,76], caffeic acid phenethyl ester (conifer trees)
70], wasabi (Japanese horseradish) [77], cafestol and kah-

eol (coffee) [78,79], cinnamonyl-based compounds (cinnamon)

80], zerumbone (ginger) [81], garlic organosulfur compounds
garlic) [82,83], lycopene (tomato) [84], carnosol (rosemany)
85,86], and avicins (Bentham plant) [87]. Besides phytochemi-
als, certain synthetic chemicals such as oltipraz (a substituted

c
d

m
t

search 58 (2008) 262–270 265

,2-dithiole-3-thione) [21], 2-indol-3-yl-methylenequinuclidin-3-
ls (an indole analogue) [88], and the synthetic triterpenoid
-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its
erivative 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imi-
azole (CDDO-Im) [89,90] are also potent Nrf2 inducers. This list of
rf2 inducing chemopreventive compounds and synthetic chemi-
als is continuously growing.

These chemopreventive compounds or synthetic chemicals
xert their chemopreventive activity by inducing the Nrf2-
ependent adaptive response, including phase II detoxifying
nzymes, antioxidants, and transporters that defend cells from
ubsequent carcinogenic insults. Therefore, Nrf2 has been viewed
s a “good” protein that protects humans from genotoxic damage
aused by carcinogens. Several in vivo studies using Nrf2-null mice
urther verified the pivotal role of Nrf2 in cancer protection. Nrf2-
ull mice have reduced basal and induced levels of phase II genes
uch as GST, NQO1, and GCL [91–95]. Nrf2 knockout mice display
ncreased sensitivity to chemical toxicants and carcinogens and are
efractory to the protective actions of chemopreventive compounds
21–23,26,96–99].

. Nrf2 in cancer promotion

Surprisingly, new emerging data has revealed the “dark” side
f Nrf2. Nrf2 protects not only normal cells from transforming
nto cancer cells, but also promotes the survival of cancer cells
nder a deleterious environment. The first evidence indicating the

nvolvement of Nrf2 in cancer promotion came from the find-
ng that Nrf2 and GSTP1 were upregulated during development
f hepatocellular carcinoma [100]. GSTP1 is a mark for neoplas-
ic lesions because it is absent in normal tissues but overexpressed
n cancerous tissues. In the same paper, Nrf2 was shown to reg-
late expression of GSTP1 through an ARE in the promoter of
STP1 [100]. Thereafter, more evidence has indicated a positive

ole of Nrf2 in cancer tumorigenesis and chemoresistance. For
nstance, many Keap1 mutations or loss of heterozygosity in the
eap1 locus have been identified in lung cancer cell lines or
ancer tissues [30,101]. Keap1 mutations or loss of heterozygos-
ty resulted in inactivation of Keap1 or a reduced expression of
eap1, which upregulated the protein level of Nrf2 and transac-
ivation of its downstream genes [30,101]. In a similar study, the
tatus of Keap1 was investigated in 65 Japanese patients with
ung cancer, which identified and showed a high incidence of
eap1 somatic mutations in patients with lung adenocarcinoma
102]. Another study reported that a mutation of Keap1 (C23Y)
ound in breast cancer impaired its ability to repress Nrf2 [103].
nder a hypoxia/reoxygenation condition, which mimics a tumor
icroenvironment, Keap1 expression was decreased whereas Nrf2

nd Prx1, were upregulated, resulting in removal of ROS and pro-
ection of cancer cells [104]. Interestingly, a recent report also
ndicates that Keap1 expression was reduced in lung cancer cell
ines and tissues, compared to that in normal bronchial epithe-
ial cell line [105]. However, the reduced expression was due to
ypermethylation of the Keap1 promoter, an epigenetic mecha-
ism [105]. In accordance with the previous findings, we found
hat Nrf2 was overexpressed at later stages of cancer in lung tissue
106]. Recently, upregulation of Nrf2 was detected in an arsenic-
ransformed human keratinocyte cell line, compared to its parental
ell line [107]. Collectively, these results suggest that loss of func-
ion of Keap1 may result in prolonged activation of Nrf2 providing

ancer cells with a growth advantage due to upregulation of Nrf2
ownstream genes.

Very recently, several independent studies indicate that Nrf2
ay be responsible for chemoresistance. Using genetic manipula-

ion, we have demonstrated a strong positive correlation between
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rf2 levels and resistance of three cancer cell lines to chemothera-
eutic drugs such as cisplatin, doxorubicin, and etoposide [106].
hemical activation of Nrf2 by pretreatment with tBHQ also

ncreased survival of neuroblastoma cells in response to the three
rugs tested [106]. Consistent with our findings, the role of Nrf2

n determining efficacy of cisplatin was also demonstrated in ovar-
an cancer cells using siRNA knockdown of Nrf2 [108]. When the

olecular mechanism of acquired resistance to tamoxifen was
nvestigated, an MCF-7 derived tamoxifen resistance cell line was
ound to have an elevated expression of Nrf2 and its downstream
enes, such as HMOX-1, Trx, Prx, and GCL [109]. Furthermore,
nockdown of Nrf2, using Nrf2–siRNA, reversed resistance of the
ells lines to tamoxifen [109]. Similarly, the Nrf2 pathway was acti-
ated in an imatinib-resistant cell line. Ascorbic acid, a reducing
eagent capable of blocking Nrf2 activation, reversed imatinib sen-
itivity [110]. Using MEF cells from wild-type and Nrf2-null mice,
rf2 was shown to be important in determining the sensitivity
f cells in response to the GSH inhibitors l-buthionine-(S,R)-
ulfoximine and doxorubicin [111].

Based on their ability to function as antioxidants and detoxify-
ng enzymes, many Nrf2 downstream genes have been shown to
ontribute to the observed Nrf2-dependent chemoresistance and
ancer promotion. The role of HMOX-1 in cancer promotion and
rug resistance has been extensively investigated [112]. HMOX-1

s an enzyme that degrades pro-oxidant heme into ferrous iron,
arbon monoxide, and biliverdin which is quickly converted into
ilirubin. The end-products of HMOX-1 have antioxidant activities
hat are able to defend cells from oxidative stress. Therefore, activa-
ion of HMOX-1 plays a key role in the anti-inflammatory response
nd in cell survival. Similar to Nrf2, the protective effect of HMOX-

in normal cells may protect us from oxidative stress-related
iseases. However, it is undesirable in cancer since it provides
selective advantage for cancer cells to survive. Consistent with

his notion, HMOX-1 has been found to be overexpressed in var-
ous tumor types. It is believed that overexpression of HMOX-1
acilitates cancer cell growth and survival in many aspects, such
s stimulating rapid growth of cancer cells, enhancing cancer
ell resistance to stress and apoptosis, promoting angiogenesis of
umors, and aiding in metastasis of tumors [112]. In support of this,
verexpression of HMOX-1 in melanoma cells by viral infection
r transient transfection resulted in an increase in cell prolifer-
tion, resistance to H2O2-induced oxidative stress, and increase
n endothelial cell division leading to angiogenesis [113]. Similar
esults were seen in vivo when mice were injected with HMOX-1
verexpressing melanoma cells, compared to mice injected with
elanoma cells [113]. Overexpression of HMOX-1 has also been

mplicated in resistance of cancer cells to conventional cancer ther-
pies. For example, A549 is more resistant to cisplatin and EGCG
nduced cell death than any other lung cancer cell line. This was
ontributed to the high expression of Nrf2 and HMOX-1 because
nhibition of HMOX-1 by siRNA or by zinc protoporphyrin, a phar-

acological HMOX-1 inhibitor, rendered cancer cells to be more
ensitive to cisplatin or EGCG-mediated cytotoxicity, associated
ith elevation of intracellular ROS [114–116]. Nitric oxide (NO) also

nduces the expression of HMOX-1 and has a potent anti-apoptotic
unction. However, when zinc protoporphyrin was utilized, apop-
osis was induced and tumor growth was reduced in rat hepatoma
ells in response to NO [117,118]. In another study, auditory cells
ere protected by piperine, a major component of black pep-
er, from cisplatin-induced apoptosis. The protection was due to

iperine-mediated induction of Nrf2 and HMOX-1, since blockage
f induction of HMOX-1 by either antisense oligos or zinc protopor-
hyrin abrogated protection [119]. Additionally, in acute myeloid

eukemia cells, TNF� was able to upregulate Nrf2 and HMOX-1,
hich makes acute myeloid leukemia cells refractory to TNF�-

r
t
a
d
r
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nduced apoptosis [120]. Lastly, upregulation of HMOX-1 attenuates
he cytotoxicity induced by cisplatin or photodynamic therapy
121,122].

In addition to HMOX-1, other Nrf2-downstream genes such as
rx1, GPx, and TrxR were also upregulated in many cancer cells
r tissues and may contribute to chemoresistance [104,123,124].
rxs are thiol-specific antioxidant proteins that detoxify peroxides.
here have been several studies showing elevated expression of
rx1 in human cancers. For example, Prx1 was significantly higher
n abnormal biopsies from thyroid lesions compared to normal
issues [125]. In another study involving 90 patients who had non-
mall cell lung cancer and underwent surgical resection, expression
f Prx1 and Nrf2 was elevated in more than 60% of patients
124]. Additionally, a strong correlation was found between over-
xpression of Prx1 and recurrence/decreased survival [124]. Taken
ogether, these data imply that Prx1 has an effect on cancer devel-
pment and progression.

Another Nrf2 downstream gene is GPx, which is part of a large
amily of selenoproteins. There are five known isoforms and all of
hem have the same general function of detoxifying hydroperox-
des to water or an alcohol using reduced glutathione [126]. The
ifference between the five isoforms is in substrate specificity and

ocalization [127]. One particular GPx, GI-GPx or GPx2, is mainly
xpressed in the epithelium of the gastrointestinal system, but can
lso be found in other types of epithelial cells. It has been implicated
n the control of inflammation and malignant growth [127]. An
RE sequence was identified in the promoter region of GI-Gpx and
pregulation of GI-Gpx by overexpression of Nrf2 or by tBHQ, SF,
nd curcumin induction was demonstrated [11]. An increase in GI-
Px has been associated with carcinogenesis by supporting growth,

acilitating proliferation, and inhibiting oxidant-mediated apop-
osis. mRNA levels of GI-GPx are elevated in Barrett’s esophageal

ucosa and in advance stages of colorectal adenomas [128]. In
ddition, other isoforms of GPxs have also been implicated in both
ancer prevention and cancer progression, but whether or not they
re regulated by Nrf2 is still uncertain.

Another selenoprotein, TrxR, is ubiquitously expressed in mam-
alian tissues and catalyzes the reduction of the active site

isulfide of Trx [123]. Trx and TrxR are important in regulating the
edox status of cells and are involved in many cellular functions
ncluding redox control of transcription factors, protection against
xidative stress, and cell growth [123]. TrxR has also been shown
o be induced by SF and tBHQ both in vivo and in vitro [129–131].
akurai et al. showed that cadmium, along with other Nrf2 activa-
ors, including arsenite, DEM, and hydrogen peroxide, induced gene
xpression, and activated the activity of TrxR1, which suggests that
rxR has a protective role against cancer [12,13]. However, it has
een shown that TrxR1 is elevated in several cancer lines and in
uman gastrointestinal cancer tissues [132,133]. Other studies in
upport of TrxR’s role in cancer progression showed that inhibition
f TrxR prevents cancer cell growth in vivo and knockdown of TrxR
n lung carcinoma cells reverses the tumorigenicity and invasion
134]. Several groups have shown that cisplatin induces intracellu-
ar expression of human Trx and that enhanced expression is closely
ssociated with the development of cellular resistance to cisplatin
135]. It has also been shown that cells resistant to cisplatin have an
levated expression of TrxR and that inhibiting TrxR activity using
chemical inhibitor or siRNA increases the cellular sensitivity to

isplatin [135].
Other downstream genes of Nrf2 that are upregulated in
esponse to oxidative stress include GSTs and GCL. There are
hree super-families of GSTs: microsomal (MAPEG), mitochondrial,
nd cytosolic [136]. GSTs are phase II conjugating enzymes that
etoxify reactive electrophilic metabolites and their effectiveness
elies on the level of glutathione (GSH), which is determined by
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CL and GSH synthase (GSHS) [136]. Not only do GSTs detox-
fy electrophilic xenobiotics, but they also inactivate endogenous
ompounds, such as aldehydes, quinones, epoxides, and hydroper-
xides [137]. The largest super-family, cytosolic GSTs, is composed
f seven classes: Alpha, Mu, Omega, Pi, Sigma, and Zeta, with a
road spectrum of substrate specificity and different expression
atterns. (For a more detailed review on the activities of the vari-
us human cytosoloc, mitochondrial and microsomal GSTs, refer to
ef. [137].)

There have been several studies demonstrating increased GST
xpression in cancer cell lines and tumors that are multidrug
esistant [136]. In an epidemiological study, patients with chronic
ymphocytic leukemia had a higher expression of GST-Pi, Alpha,
nd Mu when compared to normal lymphocytes [138]. In addition,
here was higher GST activity in chlorambucil-resistant patients
138]. It has been shown that transient transfection of GST-Pi into
OS cells caused an increase in drug resistance to chlorambucil,
nd transfection of GST-Pi caused a human colon cancer cell line
o be resistant to adriamycin, cisplatin, melphalan, and etoposide
139]. Also, inhibiting GST expression by antisense cDNA and spe-
ific inhibitors of GCL in several other cancer cell lines increased
ensitivity to chemotherapeutics like doxorubicin and vincristine
140–143]. Levels of GSH and the expression of GCL, both mRNA
nd protein, were higher in human cancer cells that were resis-
ant to cisplatin or doxorubicin compared to that in drug-sensitive
ells [144]. In conjunction, depletion of GSH elevated the sensitiv-
ty of esophageal tumors to cisplatin, suggesting a role for GSH in
rug resistance [145]. In a review discussing the role of glutathione-
ependent enzymes, it listed a great deal of evidence supporting
ow these enzymes affect drug resistance in cancer cells: (i) GSH-
ependent enzymes and enzymes involved in maintaining cellular
SH are increased in cancer cell lines and are resistant to alkylating
gents or drugs that generate free radicals, (ii) drug resistant bone
arrow or lung cancer cells and preneoplastic foci in rat liver have

igher GSH levels, (iii) depletion of cellular GSH levels sensitizes
ells to the toxic effects of a wide range of chemotherapeutics, and
iv) amplification of cellular GSH levels, both in vivo and in vitro,
rotects against toxic effects of cytotoxic drugs [146].

Overexpression of detoxifying enzymes is not the only culprit
hought to be involved in the progression of cancer. It has also
een hypothesized that transporters, like MRPs, may also play a role
ecause they too are increased in cancer cell lines and tumor sam-
les. MRPs transport exogenous and endogenous organic anions,

ncluding conjugated metabolites derived from detoxification by
hase II conjugating enzymes, out of the cell [147]. This causes
umor cells to acquire a resistance to different drugs because
ncreased expression of transporters leads to a decrease in drug
ccumulation in the cell [136]. Furthermore, Nrf2 was shown to be
ecessary for the constitutive and inducible expression of MRP1 in
EFs [148]. Nrf2 also enhances the expression of MRP2 by binding

o its defined ARE sequence upon treatment with Nrf2 inducers [15].
t has been suggested that there is a shared coordinated regulatory

echanism between GST and MRP and that oxidative stress, some
enobiotics, and anticancer agents, like cisplatin and alkylating
gents, co-induce GCL and MRP1 [136]. AREs have been identified in
ome isoforms of GSTs, UGTs, and MRPs, which provides a good indi-
ation that they are coordinately regulated by Nrf2 [10,14–16,149].
oordinated regulation of GST-Pi and MRP1 by Nrf2 has also been
onfirmed by utilizing several known Nrf2 inducers, such as tBHQ,
ltripaz, and SF [136].
NQO1 is another gene which protects against oxidative stress
nd can be induced by thiol-active agents in an Nrf2-dependent
ashion. It has long been regarded as a chemoprotective enzyme
hat catalyzes the reduction and detoxification of highly reactive
uinones [150,151]. Recently, it has been discovered that NQO1
search 58 (2008) 262–270 267

ight be involved in the stabilization of the tumor suppressor gene
53, which supports the protective role of NQO1 against cancer
152]. However, there is mounting evidence supporting a positive
ole for NQO1 in cancer progression. NQO1 is overexpressed in var-
ous tumors including those of the adrenal gland, bladder, breast,
olon, liver, lung, ovary, and thyroid [106,150,153–155]. In another
tudy, protein expression and enzymatic activity of NQO1 was
ncreased in colon and gastric carcinoma cell lines and in colorec-
al tumor samples compared to peripheral normal samples [156]. In
ddition, there was higher expression of NQO1 in metastatic tumors
han tumors that were not. Together, these findings suggest a cor-
elation between high levels of NQO1 and tumorigenesis as well
s malignant progression of cancer [156]. Overexpression of NQO1
ay also play a role in cancer drug resistance. In a study conducted

n our laboratory, knockdown of Nrf2 using siRNA in A549 lung can-
er cells, showed a decrease in NQO1 mRNA expression along with
dramatic decrease in NQO1 enzyme activity, which sensitized the
ells to the toxic effects of three chemotherapeutic drugs, cisplatin,
oxorubicin, and etoposide [106]. Collectively, these data confirm
hat Nrf2 regulates the expression of NQO1 and that NQO1 has
otential dual roles in cancer. Lastly, it is thought that an increase in
QO1 is accompanied by an increase in other antioxidant enzymes,

uch as HMOX-1 and GST, providing tumors with increased protec-
ion against cytotoxic agents allowing for rapid cancer progression
157].

. Conclusion

Since the discovery of Nrf2, there has been mounting evidence
xhibiting the positive role of Nrf2 in cancer protection and how it is
n essential transcription factor in protecting humans from oxida-
ive stress-related diseases. The main focus of research thus far has
een to find activators of Nrf2 for chemoprevention, but recent find-

ngs suggest that there is a “dark” side of Nrf2. In vitro studies show
hat overexpression of Nrf2 can lead to the increased expression
f several intracellular redox-balancing proteins, phase II detoxify-
ng enzymes, and transporters, which can provide cancer cells with

growth advantage and cause resistance to chemotherapies. It is
mportant to verify the cancer promoting role of Nrf2 observed in
ancer cell lines and tumor biopsies, using in vivo animal models.

Finding the “dark” side of Nrf2 provides an opportunity for ther-
peutic intervention against chemoresistance. An inhibitor of Nrf2
an be used in conjunction with chemotherapy to sensitize cancer
ells to chemical treatment. Since Nrf2 is a transcription factor that
egulates the expression of several downstream genes that protect
ancer cells from apoptosis, it would be a more efficient drug target
han the individual downstream gene, such as HMOX-1 or TrxR.
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